Школа программиста

Забыли пароль?
[задачи] [курсы] [олимпиады] [регистрация]
Логин:   Пароль:    
Скрыть меню
О школе
Правила
Олимпиады
Фотоальбом
Гостевая
Форум
Архив олимпиад
Архив задач
Состояние системы
Рейтинг
Курсы
Новичкам
Работа в системе
Курсы ККДП
Дистрибутивы
Статьи
Ссылки


 

Доказательство теоремы

(Время: 1 сек. Память: 16 Мб Сложность: 47%)

Преподаватель читает курс лекций, в рамках которого обычно доказывается N различных теорем. Некоторые теоремы могут ссылаться в доказательстве друг на друга. Более точно, каждая теорема Ti зависит от некоторого набора из Ci других теорем; доказать ее можно лишь доказав не менее половины теорем из данного набора. При этом структура курса такова, что нет такой теоремы, от которой зависели бы две или более различных теоремы, а также нет цепочки теорем (Ti1,Ti2, . . . , Tis) такой, что Ti1 зависит от Ti2, Ti2 зависит от Ti3, …, Tis−1 зависит от Tis, а Tis – от Ti1.

Однако, в этом семестре в связи с обилием праздников, перекрывающихся с лекциями, может не удаться доказать все теоремы курса. Тем не менее, нужно доказать основную теорему курса – это центральный результат всей теории, и именно его, скорее всего, придется применять слушателям в других курсах в следующем семестре. Поэтому преподаватель хочет расположить теоремы в таком порядке, чтобы основную теорему курса удалось доказать как можно раньше. Затем, если останется время, он сможет вернуться к доказательству других, менее важных теорем.

Для простоты будем считать, что все теоремы доказываются за одинаковое время. Нужно доказать такое множество теорем и в таком порядке, чтобы основная теорема оказалась доказанной и чтобы общее время доказательства было минимально.

Входные данные

В первой строке входного файла INPUT.TXT записано число N (1 ≤ N ≤ 10 000) – количество теорем. Каждая из следующих N строк описывает теоремы, от которых зависит Ti−1, где i – номер этой строки во входном файле. Эти строки имеют вид Ai,1 Ai,2 ... Ai,Ci 0; здесь Ai,j – номер теоремы, от которой зависит Ti−1. Среди всех чисел Ai,j во входном файле нет двух одинаковых. Основная теорема имеет номер 1. Все числа во входном файле целые.

Выходные данные

В первой строке выходного файла OUTPUT.TXT выведите K – минимальное количество теорем, которые потребуется доказать. В последующих K строках выведите номера этих теорем в порядке их доказательства, по одному числу в каждой. Если ответов с минимальным K несколько, можно вывести любой из них.

Примеры

INPUT.TXTOUTPUT.TXT
12
2 0
0
2
2
1
26
2 3 6 0
4 0
0
0
0
5 0
4
4
3
2
1
33
0
1 0
2 0
1
1

Для отправки решения задачи необходимо зарегистрироваться и авторизоваться!

[Обсуждение] [Все попытки] [Лучшие попытки]


Красноярский краевой Дворец пионеров, (c)2006 - 2024, ИНН 246305493507, E-mail: admin@acmp.ru