|
Сумма кубов
(Время: 1 сек. Память: 16 Мб Сложность: 52%)
Известно, что любое натуральное число можно представить в виде суммы не более чем четырех квадратов натуральных чисел. Вася решил придумать аналогичное утверждение для кубов - он хочет узнать, сколько кубов достаточно для представления любого числа. Его первая рабочая гипотеза - восемь.
Выяснилось, что почти все числа, которые Вася смог придумать, представляются в виде суммы не более чем восьми кубов. Однако число 239, например, не допускает такого представления. Теперь Вася хочет найти какие-либо другие такие числа, а также, возможно, какую-либо закономерность в представлениях всех остальных чисел, чтобы выдвинуть гипотезу относительно вида всех чисел, которые не представляются в виде суммы восьми кубов.
Помогите Васе написать программу, которая проверяла бы, возможно ли представить данное натуральное число в виде суммы не более чем восьми кубов натуральных чисел, и если это возможно, то находила бы какое-либо такое представление.
Входные данные
Во входном файле INPUT.TXT записано натуральное число N (1 ≤ N ≤ 2×109).
Выходные данные
В выходной файл OUTPUT.TXT выведите не более восьми натуральных чисел в порядке невозрастания, кубы которых в сумме дают N. Если вариантов несколько, то выведите любой. Если искомого представления не существует, то в выходной файл необходимо вывести слово IMPOSSIBLE.
Примеры
№ | INPUT.TXT | OUTPUT.TXT |
1 | 17 | 2 2 1 |
2 | 239 | IMPOSSIBLE |
Для отправки решения задачи необходимо зарегистрироваться и авторизоваться!
| |