Школа программиста

Забыли пароль?
[задачи] [курсы] [олимпиады] [регистрация]
Логин:   Пароль:    
Скрыть меню
О школе
Правила
Олимпиады
Фотоальбом
Гостевая
Форум
Архив олимпиад
Архив задач
Состояние системы
Рейтинг
Курсы
Новичкам
Работа в системе
Алгоритмы
Курсы ККДП
Дистрибутивы
Ссылки

HotLog


 

Гипотеза Гольдбаха

(Время: 1 сек. Память: 16 Мб Сложность: 30%)

Известно, что любое чётное число, большее 2, представимо в виде суммы 2 простых чисел, причём таких разложений может быть несколько. Впервые гипотезу о существовании данного разложения сформулировал математик Х. Гольдбах.

Требуется написать программу, производящую согласно утверждению Гольдбаха, разложение заданного чётного числа. Из всех пар простых чисел, сумма которых равна заданному числу, требуется найти пару, содержащую наименьшее простое число.

Входные данные

Входной файл INPUT.TXT содержит чётное число N (4 ≤ N ≤ 998).

Выходные данные

В выходной файл OUTPUT.TXT необходимо вывести два простых числа, сумма которых равна числу N. Первым выводится наименьшее число.

Примеры

INPUT.TXTOUTPUT.TXT
163 3
299273 919

Для отправки решения задачи необходимо зарегистрироваться и авторизоваться!

 Язык программирования C++
 Решение олимпиадных задач
 Региональные олимпиады
 Книги Фёдора Меньшикова
 Тренировочные олимпиады
 Школьный этап
 Муниципальный этап
 Региональный этап
 Полуфинал ВКОШП
 Личное первенство СФУ
 2005 / 2006
 2006 / 2007
 2007 / 2008
 2008 / 2009
 2009 / 2010
 2010 / 2011
 2011 / 2012
 2012 / 2013
 2013 / 2014 7-8 классы
 2013 / 2014 9-11 классы
 2014 / 2015 7-8 классы
 2014 / 2015 9-11 классы
 2015 / 2016 7-8 классы
 2015 / 2016 9-11 классы
 2016 / 2017 7-8 классы
 2016 / 2017 9-11 классы
 2017 / 2018 7-8 классы
 2017 / 2018 9-11 классы
 2018 / 2019 7-8 классы
 2018 / 2019 9-11 классы
 2019 / 2020 7-8 классы
 2019 / 2020 9-11 классы
 A. Гипотеза Гольдбаха
 B. Четырехзначный палиндром
 C. Мы с конем вдвоем по полю пойдем
 D. Преобразование последовательности - 2

Красноярский краевой Дворец пионеров, (c)2006 - 2020, E-mail: admin@acmp.ru