Школа программиста

Забыли пароль?
[задачи] [курсы] [олимпиады] [регистрация]
Логин:   Пароль:    
Скрыть меню
О школе
Правила
Олимпиады
Фотоальбом
Гостевая
Форум
Архив олимпиад
Архив задач
Состояние системы
Рейтинг
Курсы
Новичкам
Работа в системе
Курсы ККДП
Дистрибутивы
Статьи
Ссылки


 

Полные квадраты

(Время: 1 сек. Память: 16 Мб Сложность: 45%)

С целью поиска закономерностей иногда полезно сгенерировать длинную последовательность по определенным правилам. Известно, например, что последовательность 0, 0+1, 0+1+3, 0+1+3+5, ... , 0+1+3+ ... +(2n-1), ... , составленная из сумм нескольких первых нечетных натуральных чисел, состоит из квадратов целых чисел: 0, 1, 4, 9, . . . , n2, ... .

Обобщим эту последовательность следующим образом: будем использовать вместо начального значения не ноль, а число k. Получим последовательность: k, k+1, k+1+3, k+1+3+5, ... , k+1+3+ ... +(2n-1), ... . В отличие от случая k = 0, в этой последовательности могут встречаться не только полные квадраты. Необходимо найти минимальное целое неотрицательное число, квадрат которого встречается в этой последовательности.

Требуется написать программу, которая по заданному целому числу k определяет, квадрат какого минимального неотрицательного целого числа встречается в описанной последовательности, либо выясняет, что в ней вообще не встречается полных квадратов.

Входные данные

В единственной строке входного файла INPUT.TXT содержится целое число k — начальное число в последовательности (-1012 ⩽ k ⩽ 1012).

Выходные данные

В выходной файл OUTPUT.TXT выведите минимальное неотрицательное целое число, квадрат которого встречается в описанной последовательности. Если в последовательности не встречается квадратов целых чисел, выведите «none».

Примеры

INPUT.TXTOUTPUT.TXT
100
2-52
32none

Пояснения к примерам

В первом примере каждое число последовательности является полным квадратом. Минимальный из них — 0, 02 = 0.

Во втором примере последовательность начинается так: -5, -4, -1, 4, 11, 20, . . .. Минимальное неотрицательное целое число, квадрат которого встречается в последовательности — 2, 22 = 4.

В третьем примере последовательность начинается так: 2, 3, 6, 11, 18, ... . В ней нет квадратов целых чисел.


Для отправки решения задачи необходимо зарегистрироваться и авторизоваться!

[Обсуждение] [Все попытки] [Лучшие попытки]


 Язык программирования C++
 Решение олимпиадных задач
 Региональные олимпиады
 Книги Фёдора Меньшикова
 Тренировочные олимпиады
 Школьный этап
 Муниципальный этап
 Региональный этап
 Полуфинал ВКОШП
 Личное первенство СФУ
 2006 / 2007
 2007 / 2008
 2008 / 2009
 2009 / 2010
 2010 / 2011
 2011 / 2012
 2012 / 2013
 2013 / 2014
 2014 / 2015
 2015 / 2016
 2016 / 2017
 2017 / 2018
 2018 / 2019
 2019 / 2020
 2020 / 2021
 2021 / 2022
 2022 / 2023
 2023 / 2024
 A. Два измерения
 B. Полные квадраты
 C. Автоматизация склада
 D. Машинное обучение
 E. Неисправный марсоход
 F. Интервальные тренировки
 G. Экспедиция
 H. Разбиение на пары

Красноярский краевой Дворец пионеров, (c)2006 - 2024, ИНН 246305493507, E-mail: admin@acmp.ru