Школа программиста

Забыли пароль?
[задачи] [курсы] [олимпиады] [регистрация]
Логин:   Пароль:    
Скрыть меню
О школе
Правила
Олимпиады
Фотоальбом
Гостевая
Форум
Архив олимпиад
Архив задач
Состояние системы
Рейтинг
Курсы
Новичкам
Работа в системе
Алгоритмы
Курсы ККДП
Дистрибутивы
Ссылки

HotLog


 

Теория игр

(Время: 1 сек. Память: 16 Мб Сложность: 28%)

Одним из интересных объектов, изучаемых в теории игр, являются так называемые антагонистические игры двух лиц. Такие игры характеризуются множеством X стратегий первого игрока, множеством Y стратегий второго игрока и функцией выигрыша K(x, y) (x из X, y из Y). Если множества стратегий X и Y конечны, то такую игру принято называть матричной, так как функцию выигрыша K в этом случае удобно задавать матрицей.

Рассмотрим матричную игру, в которой X = {1,…,n}, Y = {1,…,m}. Матрицу выигрышей обозначим символом K. Нижним значением игры назовем число maxi=1..nminj=1..m Kij . Верхним значением игры назовем число minj=1..mmaxi=1..n Kij. Отметим также, что игры, у которых нижнее и верхнее значение совпадают, называются играми с седловой точкой.

Задана матрица выигрышей K для некоторой матричной игры. Найдите ее верхнее и нижнее значение.

Входные данные

Первая строка входного файла INPUT.TXT содержит целые числа n и m (1 ≤ n,m ≤ 100). Далее следуют n строк по m чисел в каждой. j-ое число i-ой строки равно Kij . Все Kij по модулю не превосходят 1000.

Выходные данные

В выходной файл OUTPUT.TXT выведите нижнее и верхнее значение игры через пробел.

Примеры

INPUT.TXTOUTPUT.TXT
13 3
4 -1 -3
-2 1 3
0 2 -3
-2 2
23 4
-1 0 2 1
-2 0 1 0
2 1 -1 -2
-1 1

Для отправки решения задачи необходимо зарегистрироваться и авторизоваться!

 Язык программирования C++
 Решение олимпиадных задач
 Региональные олимпиады
 Книги Фёдора Меньшикова
 Тренировочные олимпиады
 Введение
 Условный оператор
 Операторы цикла
 Строковые типы данных
 Массивы
 Функции
 Сортировка
 Двумерные массивы
 Рекурсия
 Базовые операции
 Символьные матрицы
 Целочисленные матрицы
 A. Сапер
 B. Художник
 C. Проверка на симпатичность
 D. Седловые точки
 E. Теория игр
 F. Судоку
 G. Спираль
 H. Змейка
 I. Винни-пух
 J. Матрица: Перезагрузка
 K. Магический квадрат

Красноярский краевой Дворец пионеров, (c)2006 - 2020, E-mail: admin@acmp.ru